Page 1

1SS 2010
4th ITER International Summer School
May 31 - June 4, 2010, Austin, TX

Nonlinear Consequences
of
Energetic Particle Instabilities

Boris Breizman

Institute for Fusion Studies
UT Austin

*IFS



Page 2

Outline

Examples of Experimental Data

Near-threshold Technique and Bump-on-tail Model
Nonlinear Bifurcations and Phase Space Structures
Generalization to Energetic Particles in Tokamaks
Multiple Modes and Global Transport

Concluding Remarks

*IFS



Page 3

NONLINEARITY IN ACTION
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Nonlinear Splitting of Alfvén Eigenmodes in JET

Log ISBI in #40332
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Rapid Frequency Sweeping Events
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Alfven Wave Instability and Particle Loss in TFTR

Saturation of the neutron signal reflects anomalous losses
of the injected beams. The losses result from Alfvénic activity.

| Ne/ufron signal Projected growth of
+ / i the neutron signal

t (sec)
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THEORY AT THE THRESHOLD
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Near-threshold Nonlinear Regimes

Why study nonlinear response near the threshold?

— Typically, macroscopic plasma parameters evolve slowly compared to

the instability growth time scale
— Near-threshold simulations are intrinsically challenging for most codes

— Identification of the soft and hard nonlinear regimes is crucial to

determining whether an unstable system will remain at marginal stability
— Long-lived coherent nonlinear structures can emerge

— Multiple modes can keep the system near marginal stability
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Key Ingredients in Theory

d Particle injection and effective collisions, v,,, create an
inverted distribution of energetic particles F(v).

U

Discrete spectrum of unstable modes.
O Instability drive, v,, due to wave-particle resonance (w-kv=0).

O Background dissipation rate, v,, determines the critical
gradient for the instability.

A $ m(v-w/k)

Critical slope . /\

v=w/k \'/
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The Bump-on-Tail Model Formalism

£+u£+ﬂ[ﬁ( )e +CC]8F
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oF U=
E=—4—.7T€ffdu yd ;Ekx—(ﬂf

F=Fo+f0+E:=l[fnexp(in§)+c.c.]

E = l[ﬁ?(r)e’c + c.c.]
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Near-threshold Ordering

 The time-scale of interest, T, is shorter than the trapped
particle bounce period:

T = (ekff / m)mr <<1
1 Applicability window for near-threshold ordering:
4
(yL —yd)/yL s(a)Br) <<1

1 This ordering can hold indefinitely if the effective collision
frequency is greater than the bounce frequency.

O The ensuing ordering for the distribution function:

F,>>1, 5>, f,

Page 11 *’FS



Page 12

Mode Evolution Equation

Near marginal stability the mode amplitude A
is governed by the following nonlinear equation:

d—A=A( )—lrfdzz A(T Z rfzdxe“

X
dt
A(T—Z—x) (T—Zz x)

Krook factor:
p=p/(y,-7,)
Diffusion factor: Drag gives oscillatory behaviour, in

=v/(y,-v,) contrast to the Krook and diffusive cases.
Drag factor: H.L. Berk et al., PRL 76, 1256 (1996)

=0/ (YL — yd) B.N. Breizman et al., Phys. Plasmas 4, 1559 (1997)

M K. Lilley et al., PRL 102, 195003 (2009) *’FS



Transition from Steady Nonlinear Saturation to the
Explosive Regime (Krook collision case)
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Mode Saturation Diagram
(diffusion+drag)

4 For diffusion + weak drag, steady state solution does exist

 For an appreciable amount of drag, this solution becomes unstable
(pitchfork splitting )

 The solution is explosive when drag dominates

STABLE
STEADY
STATE

NO STEADY STATE
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Fast Particle Driven TAEs

ICRH drive (JET) NBI drive (MAST)
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SPONTANEOUS FREQUENCY
SWEEPING

(phase space holes and clumps)
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Spontaneous Chirping of Weakly Unstable Mode

O Simulation of near-threshold bump-on-tail instability (N. Petviashvili, 1997) reveals
spontaneous formation of coherent phase space structures (clumps and holes)

with time-dependent frequencies.

U The phase space structures seek lower energy states to compensate
energy losses due to background dissipation.

O Clumps move to lower energies and holes move to higher energy regions.

Spatially averaged distribution function Mode power spectrum
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Dynamics of Holes and Clumps at Early Times

 Holes/clumps are the original resonant particles

d They move slowly compared to the bouce period

d The wave amplitude is
constant:
FA

w, =(16/37%)y,

1 Particles cant get inside
separatrix.

O Hole/clump gets deeper/
higher as it moves:

w/k Vil 6w=(16/3n2)yL\/2ydt/3

H.L. Berk, B.N. Breizman, N.V. Petviashvili, Phys. Lett. A234, 213 (1997)
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Effect of Drag: Holes Grow Faster, Clumps Decay

oc/(yL—yd)=1 5, yd/yl_=0.9
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Drag+Diffusion Give Hooked Frequency Pattern
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Simple Model for Drag-Diffusion Competition

O Poisson equation: dww , = (16/3n2)gyL

1 Chirping and drag deepen the hole, diffusion fills it:
dg/dt+gv’/w, =doéw/dt+a’

 Energy balance equation:

YON =3(16/3n2)gyL(d6w/dt+a2)

d The model reproduces hooked sweep:

VI =Y,)=130 , 0/(y,~Y,)=1.50 , ,/4,=0.900 , 10 Harm, 10.0 box, dtxy, =0.020 , 100
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How to Treat Long-range Frequency Sweeping

Hot electron interchange modes in Terrella
(Courtesy of Michael Mauel, Columbia University)

Observation:
Experiments exhibit signals with large
(order of unity) frequency sweeping.

Frequency (MHz)

Issue: ¥y K I
How can a small group of particles i T
produce a large change in the mode frequency?

Proposed physics mechanism:

Initial instability leads to particle trapping and creates a modulated
beam of resonant particles (BGK-type structure).

As the beam particles slow down significantly , they produce a
signal that deviates considerably from the initial mode frequency.

Page 22 B.N. Breizman, Nucl. Fusion, to be published (2010) *’FS



Slowly Varying Periodic Electrostatic Wave

Jd wave electrostatic potential (with a spatial period A):
¢olz - s0)s1]

D Lab-frame Hamiltonian:
- _p_z_ o)
H(p;zt) = . le| [z~ s(t);t ]

L Wave-frame Hamiltonian:

(p—ms)

H(p;x;t) = —le|g(x;2) x=2z-35()

[ Adiabatic invariants

A
dPassing particles: J. =f{ms "—“\/2m[H +|e|(p(x;t)]}dx
0

A Trapped particles: J vapped = ~Cp\/2m[H + |e|(p(x;t)]dx
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Downward Drift of Phase Space Clump

Beginning of chirping End of chirping

0 05 1 0

Page 24 Particle coordinate (a.u.)
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BGK Mode Equation

 Electron potential energy U has a given spatial period 4, a
slowly varying shape, and a slowly varying phase velocitys :

Ulz-s@t)t]=-le|p

J Perturbed density of plasma electrons:
én = n,U | ms*

J Local width of the separatrix:

8V =232/m(U,. -U)

J Perturbed density of trapped electrons:
on, =[£G = K@ N2 Im [([U,, - ) - (VU - U)>]

] Nonlinear Poisson equation in the wave frame:

K =w?/§

A(k) = 87e’ | F(5,) ~ F,($)|[N2 /m
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Power Balance and Chirping Rate

DSpatiaIIy periodic solution with variable phase velocity s :

s {8_¢[1§,(s'0)—ﬁ,(@]} {1+ 2cos’al 3sin2o [cosa _Cos(a%_a) ]2} sy

2 3n,cosa 2 4a 4s

2

0?2 .2
J“Seed” profile of the wave: y - ™ 322 Vo COS(%) Yo _ ES_oﬁ
4 |37 w, A w, 2n, 38,

1

-2
ms

collisional dissipation in the bulk: 0=,

}Uzdx
JdPower release by the phase space clump:

) ds
—cosa | —
dt

85 F,5) = £,8)]
3n, cosa

P = 22ms* A Fy(5,) - Fy($)] ( Sina

o

(JdPower balance condition (2=72 ) determines chirping rate.
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Frequency Sweep Dynamics
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Wave Profile Evolution During Strong Chirping

dWave amplitude decreases due to trapped particle leak
dThe final profile has multiple harmonics

—— Early phase
— Intermediate phase

— Late phase /—

05k
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GENERALIZATION

(how to apply the bump-on-tail model
to fast particles in tokamaks)
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Wave-Particle Lagrangian

®* Perturbed guiding center Lagrangian:

L= E [P019+P¢¢—H(P0;P¢;u)]+ E aA’ +2Re E AX/,(Pﬂ;P¢;u)exp(—ia—ia)t+inq0+ilﬁ)

particles modes particles, modes, !/

®* Dynamical variables:

* F, O F, ¢ are the action-angle variables for the particle
unperturbed motion

®* A isthe mode amplitude
® o isthe mode phase

* Matrix element V,(7:7,:4) is a given function, determined by the
linear mode structure

®* Mode energy: w - wA®
®* Resonance condition:

Q= na)(p(,u;Pq);E)— lwe(u;P¢;E)— sw,, (M;P(p;E)— w=0

The quantities n, [, and s are integers with s = 0 for low-frequency modes.
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Dynamical Equations

* Unperturbed particle motion is integrable and has canonical
action-angle variables /. and &..

« Unperturbed particle motion is periodic in angles &, &, andS;.

« Single resonance approximation for the Hamiltonian:

H = H,(I)+2Re[A(r)V(I)exp(i§ - iot)]

 Kinetic equation with collisions included:

Y o el iamonoic 18 _ o =0/
— + Q(I)a_g — 2Re[zA(t)exp(z§— za)t)]a = Veﬁ(aﬁ /oI ) a

« Equation for the mode amplitude with background damping
included:

dA 10 . e
—= —y, A+ Ede“V exp(—i& +iwt) f
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Estimates of Resonance Width

 Bump-on-tail kinetic equation (u = kv - a)):

0’ f, ek EaFo

ou’ 2m o du

iuf1 —

« Compare collisional term to convective term to obtain Au~v

* 1-D reduction of collision operators for resonant particles in

a tokamak:

i'D'%= a_P¢.D.aBP (ag\zazf ibf= a_B”.b /E\a_

ov v v v 8P¢) 9Q? ov oV La f 0Q
A (c.f. v3) AQf)rag (c.f. a2)
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Linear Resonance Produces a BGK-mode

® Each resonance can be treated separately when there is a

Page 33

large spacing between them

The single-resonance Lagrangian has the form

L=P0+ Po- H(PB;Pq);‘u) +2Re [AVZ (PH;P(p;u)exp(—iwt +in@ + ile)]
Additional Fourier harmonics build up when the linear mode
becomes a BGK-mode, but periodicity of the perturbation is
preserved.
Generalization to the case of slowly evolving BGK-mode:

L= Pﬁﬁ+ P(qu - H(Pﬁ;P(p;u) - U(fa)dt - ng — lﬁ;PQ;P(p;u;t)

Potential energy U is a periodic function of its first argument
y = [wdt-np-19 and a slow function of time.
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Resonant particles in a BGK-mode (contd.)

Page 34

Perturbed potential U(fa)dt—nm—lﬁ;Pg;Pw;M;t) describes a traveling
wave in phase space

Particle motion in the wave is one-dimensional due to
conservation of magnetic moment # and 2, -nP, .

Similarly to the electrostatic problem, adiabatic invariant is
conserved, except for the flow around the separatrix.

The distribution function of trapped particles is constant
within the separatrix.
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Resonant Particle Convection

 The resonance carries trapped particles along the dotted lines.
* Initial distribution along the resonance (color coded) is preserved.

 Nonlinear particle response can be expressed analytically in terms
of the perturbed fields (via waterbag approximation).

(1) - no, - l@
//ZPQD— nP, = const

P

w(t,) - nw, - lw, =0
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MULTIPLE MODES AND GLOBAL
TRANSPORT

(mode bursts and profile stiffness)
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Effect of Resonance Overlap
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Particle Transport Mechanisms of Interest

®* Neoclassical: Large excursions of resonant
particles (banana orbits) + collisional mixing

®* Convective: Transport of phase-space holes and clumps
by modes with frequency chirping

®* Quasilinear : Phase-space diffusion over a set of
overlapped resonances

Important Issue: Individual resonances are narrow. How can
they affect every particle in phase space?
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Intermittent Quasilinear Diffusion

A weak source (with insufficient power to overlap the
resonances) is unable to maintain steady quasilinear diffusion

e

Bursts occur near the marginally stable case

f _-Classical distribution

g Metastable distribution

f Marginal distribution
Y Sub-critical distribution

RESONANCES
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Simulation of Intermittent Losses
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Numerical simulations of Toroidal Alfvén Eigenmode (TAE) bursts with parameters
relevant to TFTR experiments have reproduced several important features:
— synchronization of multiple TAEs

— timing of bursts

— stored beam energy saturation

Y. Todo, et al., Phys. Plasmas 10, 2888 (2003)
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Issues in Modeling Global Transport

®* Reconciliation of mode saturation levels with experimental data
— Simulations reproduce bursty losses and particle accumulation level

— Wave saturation amplitudes appear to be larger than the experimental
values (however, this discrepancy may not affect the fast particle
pressure profiles)

* Edge effects in fast particle transport
— Sufficient to suppress modes locally near the edge

— Need better description of edge plasma parameters

®* Creation of transport barriers for fast particles
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CONCLUDING REMARKS

Al particles are equal but resonant particles are more equal
than others.

(1 Near-threshold kinetic instabilities in fusion-grade plasmas
exhibit rich but comprehensible non-linear dynamics of very
basic nature.

J  Nonlinear physics offers interesting diagnostic opportunities
associated with bifurcations and coherent structures.

d Energetic particle driven turbulence is prone to intermittency that
involves avalanche-type bursts in particle transport.
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