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NONLINEARITY IN  ACTION 
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Nonlinear Splitting of Alfvén Eigenmodes in JET 

R. F. Heeter, et al.,

PRL 85, 3177 (2000)


A. Fasoli, et al., 

PRL 81, 5564 (1998)
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MAST data


NSTX data


JET data


The ms timescale of 
these events is much 
shorter than the energy 
confinement time in the 
plasma 

Rapid Frequency Sweeping Events 
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K. L. Wong, et al., PRL 66, 1874 (1991)


Saturation of the neutron signal reflects anomalous losses  
of the injected beams. The losses result from Alfvénic activity.


Projected growth of 
 the neutron signal


Alfvén Wave Instability and Particle Loss in TFTR 
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THEORY AT THE THRESHOLD 
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     Why study nonlinear response near the threshold? 

–  Typically, macroscopic plasma parameters evolve slowly compared to 

the instability growth time scale 

–  Near-threshold simulations are intrinsically challenging for most codes 

–  Identification of the soft and hard nonlinear regimes is crucial to 

determining whether an unstable system will remain at marginal stability 

–  Long-lived coherent nonlinear structures can emerge 

–  Multiple modes can keep the system near marginal stability 

Near-threshold Nonlinear Regimes 
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Key Ingredients in Theory 

  Particle injection and effective collisions,    , create an 
inverted distribution of energetic particles F0(v).  

  Discrete spectrum of unstable modes. 

  Instability drive,    , due to wave-particle resonance (ω-kv=0). 

  Background dissipation rate,    , determines the critical 
gradient for the instability. 

v 

F0 
Critical slope 

x 

v=ω/k 

m(v-ω/k) 

 
νeff

 γ L

 γ d

 γ L = γ d
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The Bump-on-Tail Model Formalism 
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  The time-scale of interest,   , is  shorter than the trapped       
    particle  bounce period: 

  Applicability window for near-threshold ordering: 

  This ordering can hold indefinitely if the effective collision            
     frequency is greater than the bounce frequency. 

  The ensuing ordering for the distribution function: 

  
γ L − γ d( ) / γ L ≤ ω Bτ( )4

<< 1  

  
ω Bτ ≡ ekÊ / m( )1/ 2

τ << 1

  F0  >> f1   >> f0 , f2

Near-threshold Ordering 

τ
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Near marginal stability the mode amplitude A 
is governed by the following  nonlinear equation:  

  ν̂ ≡ ν / (γ L − γ d )

  β̂ ≡ β / (γ L − γ d )

Diffusion factor: 

Krook factor: 

Drag gives oscillatory behaviour, in 
contrast to the Krook and diffusive cases. 

  α̂ ≡ α / (γ L − γ d )
Drag factor: 

M.K. Lilley et al., PRL 102, 195003 (2009)


Mode Evolution Equation 

H.L. Berk et al., PRL 76, 1256 (1996)

B.N. Breizman et al., Phys. Plasmas 4, 1559 (1997)


  

dA
dτ

= A τ( ) − 1
2

dz z2 A τ − z( ) dx
0

τ −2z

∫ e−β̂ 2z+ x( )−ν̂3z2 2z /3+ x( )+ iα̂ 2 z z+ x( ) ×
0

τ / 2

∫

A τ − z − x( ) A* τ − 2z − x( )
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© Imperial College London 

Transition from Steady Nonlinear Saturation to the  
Explosive  Regime (Krook collision case) 

Instability drive increases 
from (a) to (d)  

saturated mode limit cycle 

explosive growth chaotic regime 

  β
 = 4.31

  β
 = 2.2

  β
 = 1.28   β

 = 1.15

  
β ≡

νeff

γ L − γ d( )
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  For diffusion + weak drag,  steady state solution does exist 
  For an appreciable amount of drag, this solution becomes unstable    
     (pitchfork splitting ) 
  The solution is explosive when drag dominates  

Mode Saturation Diagram  
(diffusion+drag) 



Page 15


Fast Particle Driven TAEs 

          ICRH drive (JET)      NBI drive (MAST) 

R. F. Pinches, et al.,

PPCF 46, S47(2004)


R. F. Heeter, et al.,

PRL 85, 3177 (2000)
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SPONTANEOUS FREQUENCY 
SWEEPING 

(phase space holes and clumps) 
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Spatially averaged distribution function Mode power spectrum 

  Simulation of near-threshold bump-on-tail instability (N. Petviashvili, 1997) reveals 
    spontaneous formation of coherent phase space structures (clumps and holes) 
    with time-dependent frequencies. 

  The phase space structures seek lower energy states to compensate 
    energy losses due to background dissipation. 

  Clumps move to lower energies and holes move to higher energy regions. 

Spontaneous Chirping of Weakly Unstable Mode  
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  Holes/clumps are the original resonant particles 

  They move slowly compared to the bouce period 

  δF ~ F0
′δv

  The wave amplitude is 
constant: 

  Particles cant get inside 
separatrix. 

  Hole/clump gets deeper/
higher as it moves: 

H.L. Berk, B.N. Breizman, N.V. Petviashvili, Phys. Lett.  A 234, 213 (1997)


Dynamics of Holes and Clumps at Early Times 

  
δω = 16 / 3π 2( )γ L 2γ dt / 3

  
ω B = 16 / 3π 2( )γ L



Page 19


Effect of Drag: Holes Grow Faster, Clumps Decay 

Simulations by M.K. Lilley (2010)
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JET (ICRH) MAST (NBI) 

Bump-on-tail 
SIMULATION 

   Hooked frequency chirp   
     seen in BOT simulations. 

   Also seen in MAST (NBI)  
     and JET (ICRH) 

Drag+Diffusion Give Hooked Frequency Pattern 

M.K. Lilley , TTF Meeting (2010)
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  Poisson equation: 

  Chirping and drag deepen the hole, diffusion fills it:  

  Energy balance equation: 

  The model reproduces hooked sweep: 

  dg / dt + gν 3 /ω B
2 = dδω / dt +α 2

  
γ dω B

3 = 3 16 / 3π 2( )gγ L dδω / dt +α 2( )

  
δωω B = 16 / 3π 2( )gγ L

Simple Model for Drag-Diffusion Competition 
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How to Treat Long-range Frequency Sweeping  

Observation: 
    Experiments exhibit signals with large 
    (order of unity) frequency sweeping. 

Issue: 
    How can a small group of particles 
    produce a large change in  the mode  frequency? 

Proposed physics mechanism: 
 Initial instability leads to particle trapping and creates a modulated 
beam of resonant particles (BGK-type structure). 

    As the beam particles slow  down significantly , they produce a 
signal that deviates considerably from the initial mode frequency. 

Hot electron interchange modes in Terrella 
(Courtesy of Michael Mauel, Columbia University)


B.N. Breizman, Nucl. Fusion, to be published (2010)
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Slowly Varying Periodic Electrostatic Wave  

 Wave electrostatic potential (with a spatial period   ):  

 Lab-frame Hamiltonian: 

 Wave-frame Hamiltonian: 

 Adiabatic invariants 

 Passing particles:  

 Trapped particles: 

ϕ z − s(t);t[ ]

H (p; z;t) = p2

2m
− e ϕ z − s(t);t[ ]

 

H (p; x;t) =
p − ms( )2

2m
− e ϕ x;t( )

λ

 

J± = ms ± 2m H + e ϕ x;t( ) { }
0

λ

∫ dx

 
Jtrapped = 2m H + e ϕ x;t( ) dx∫

x = z − s(t)
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Downward Drift of Phase Space Clump 

Beginning of chirping
 End of chirping

P

ar
tic

le
 m

om
en
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m

 (a
.u

.)


Particle coordinate (a.u.)
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BGK Mode Equation 

 Electron potential energy     has a given spatial period    , a 
slowly varying shape, and  a slowly varying  phase velocity   :  

 Perturbed density of plasma electrons: 

 Local width of the separatrix: 

 Perturbed density of trapped electrons: 

 Nonlinear Poisson equation in the  wave frame: 

U z − s(t);t[ ] ≡ − e ϕ

λ
 s

U

 
δn = n0U / ms

2

δV = 2 2 / m Umax −U( )

 
δnt = Fb ( s0 ) − Fb ( s)[ ]2 2 / m Umax −U( ) − Umax −U( )





∂2U
∂x2

= −k2U − A(k) Umax −U( ) − Umax −U( )





 

k2 ≡ ω p
2 / s2

A(k) ≡ 8πe2 Fb ( s0 ) − Fb ( s)[ ] 2 / m
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 Spatially periodic solution with variable phase velocity    :         

 “Seed” profile of the wave: 

 Collisional dissipation in the bulk: 

 Power release by the phase space clump:  

 Power balance condition (         ) determines chirping rate. 

Power Balance and Chirping Rate 

 

U =
ms2

2
8 s Fb ( s0 ) − Fb ( s)[ ]
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Frequency Sweep Dynamics 

Previous 
theory


New 
theory
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Wave Profile Evolution During Strong Chirping 

         Early phase 
         Intermediate phase 
         Late phase    

 Wave amplitude decreases due to trapped particle leak 
 The final profile has multiple harmonics 
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GENERALIZATION  

(how to apply the bump-on-tail model  
to fast particles in tokamaks)  
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Wave-Particle Lagrangian 

•  Perturbed guiding center Lagrangian: 

•  Dynamical variables: 
•                       are  the action-angle variables for the particle    

unperturbed motion 
•         is the mode amplitude 
•         is the mode phase 

•  Matrix element               is a given function, determined by the 
linear mode structure 

•  Mode energy: 
•  Resonance condition:  

 

L = Pϑ ϑ + Pϕ ϕ − H Pϑ ;Pϕ ;µ( ) 
particles
∑ + αA2

modes
∑ + 2Re

particles, modes,  l
∑ AVl Pϑ ;Pϕ ;µ( )exp(−iα − iωt + inϕ + ilϑ )

Pϑ ,  ϑ,  Pϕ ,  ϕ

W =ωA2

Vl Pϑ ;Pϕ ;µ( )

A
α

Ω ≡ nωϕ µ;Pϕ ;E( ) − lωθ µ;Pϕ ;E( ) − sωψ µ;Pϕ ;E( ) −ω = 0

The quantities n, l, and s are integers with s = 0 for low-frequency modes.
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Dynamical Equations


•  Unperturbed particle motion is integrable and has canonical 
action-angle variables     and   . 

•  Unperturbed particle motion is periodic in angles   ,    , and    . 

•  Single resonance approximation  for the Hamiltonian: 

•  Kinetic equation with collisions included: 

•  Equation for the mode amplitude with background damping  
  included: 

∂f
∂t
+Ω I( ) ∂f

∂ξ
− 2Re iA(t)exp(iξ − iωt)[ ]∂f

∂I
= νeff

3 ∂Ω / ∂I( )−2 ∂
2 f
∂I 2

dA
dt

= −γ dA +
iω
G

dΓV * exp(−iξ + iωt) f∫

H = H0 I( ) + 2Re A t( )V I( )exp(iξ − iωt) 

Ii ξi

ξ1 ξ2 ξ3
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•   Compare collisional term to convective term to obtain            . 
  
iuf1 −ν

3 ∂
2 f1

∂u2 = −
ek
2m

Ê
∂F0

∂u

•   Bump-on-tail kinetic equation                  : 

  Δu ~ ν

  
u ≡ kv −ω( )

    

∂

∂v
⋅D ⋅

∂f
∂v

=
∂P

φ

∂v
⋅D ⋅

∂P
ϕ

∂v
∂Ω

∂P
φ











2

  

∂2 f
∂Ω2

 
ΔΩDiff

3 c.f.ν 3( )
   

∂

∂v
bf =

∂P
φ

∂v
⋅b ∂Ω

∂P
φ











  

∂f
∂Ω

 
ΔΩDrag

2 c.f.α 2( )

•   1-D reduction of collision operators for resonant particles in            
    a tokamak: 

Estimates of Resonance Width 
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Linear Resonance Produces a BGK-mode 

•  Each resonance can be treated separately when there is a   
large spacing between them  

•  The single-resonance Lagrangian has the form  

•  Additional Fourier harmonics build up when the linear mode 
becomes a BGK-mode, but periodicity of the perturbation is 
preserved.  

•  Generalization to the case of slowly evolving BGK-mode: 

•  Potential energy      is a periodic function of its first argument                                 
                              and a slow function of time. 

 
L = Pθ θ + Pϕ ϕ − H Pθ ;Pϕ ;µ( ) + 2Re AVl Pθ ;Pϕ ;µ( )exp(−iωt + inϕ + ilθ) 

 
L = Pϑ ϑ + Pϕ ϕ − H Pϑ ;Pϕ ;µ( ) −U ωdt − nϕ − lϑ;Pθ ;Pϕ ;µ;t∫( )

U
ψ ≡ ωdt − nϕ − lϑ∫
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Resonant particles in a BGK-mode (contd.) 

•  Perturbed potential                                   describes a traveling 
wave in phase space  

•  Particle motion in the wave is one-dimensional  due to 
conservation of magnetic  moment      and              . 

•  Similarly to the electrostatic problem, adiabatic invariant is 
conserved, except for the flow around the separatrix. 

•  The distribution function of trapped particles is constant 
within the separatrix. 

lPϕ − nPθµ

U ωdt − nϕ − lϑ;Pθ ;Pϕ ;µ;t∫( )
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Pϕ

Pθ

Resonant Particle Convection 

•  The resonance carries trapped particles along the dotted lines. 

•  Initial distribution along the resonance (color coded) is preserved. 

•  Nonlinear particle response can be expressed analytically in terms   
  of the perturbed fields (via waterbag approximation).  

ω (t2 ) − nωϕ − lωθ = 0

ω (t1) − nωϕ − lωθ = 0

lPϕ − nPθ = const
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MULTIPLE MODES AND GLOBAL 
TRANSPORT  

(mode bursts and profile stiffness) 
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Effect of  Resonance Overlap  

 The overlapped 
resonances 
release more 
free energy than  
the isolated 
resonances 
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Particle Transport Mechanisms of Interest 

•  Neoclassical:    Large excursions of resonant    
    particles (banana orbits) + collisional mixing 
    

•  Convective:  Transport of phase-space holes and clumps 
   by modes with frequency chirping  
   

•  Quasilinear :  Phase-space diffusion over a set of  
   overlapped resonances 

Important Issue:  Individual resonances are narrow.  How can 
   they affect every particle in phase space? 
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Intermittent Quasilinear Diffusion 

Classical distribution


Marginal distribution


RESONANCES 

Metastable distribution


Sub-critical distribution


A weak source (with insufficient power to overlap the   
resonances) is unable to maintain steady quasilinear diffusion 

Bursts occur near the marginally stable case 

f
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 Numerical simulations of Toroidal Alfvén Eigenmode (TAE) bursts with parameters 
relevant to TFTR experiments have reproduced several important features:  
–  synchronization of multiple TAEs 
–  timing of bursts 
–  stored beam energy saturation   

stored beam energy

with TAE turbulence


co-injected beam part


classically slowed down beam


counter injected 

beam part 


Simulation of Intermittent Losses 

Y. Todo, et al., Phys. Plasmas 10, 2888 (2003)
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Issues in Modeling Global Transport 

•  Reconciliation of mode saturation levels with experimental data 
–  Simulations reproduce bursty losses and particle accumulation level 
– Wave saturation amplitudes appear to be larger than the experimental 

values (however, this discrepancy may not affect the fast particle 
pressure profiles)  

•  Edge effects in fast particle transport 
–  Sufficient to suppress modes locally near the edge 
–  Need better description of edge plasma parameters 

•  Creation of transport barriers for fast particles 



Page 42


  All particles are equal but resonant particles are more equal 
than others. 

  Near-threshold kinetic instabilities in fusion-grade plasmas 
exhibit rich but comprehensible non-linear dynamics of very 
basic nature.  

  Nonlinear physics offers interesting diagnostic opportunities 
associated with bifurcations and coherent structures. 

  Energetic particle driven turbulence is prone to intermittency that 
involves  avalanche-type bursts in particle transport.  

CONCLUDING REMARKS  


